FROZEN HEAT | Volume 1

REFERENCES

submarine slide off Norway. Geo-Mar. Lett., 7, 191-198 Carney, R.S. (1994). Consideration of the oasis analogy for chemosynthetic communities at Gulf-of-Mexico hydrocarbon vents. Geo-Mar. Lett., 14, 149-159 Childress, J.J., Fisher, C.R., Brooks, J.M., Kennicutt, M.C., Bidigare, R. and Anderson, A.E. (1986). A methanotrophic marine molluscan (Bivalvia, Mytilidae) symbiosis - Mussels fueled by gas. Science, 233, 1306-1308 Colwell, F.S. and Ussler III, W. (2010). Global scale consequences of biological methane production. In Handbook of hydrocarbon and lipid microbiology (ed. K.N. Timmis). pp. 3056-3065. Springer-Verlag, Berlin Cordes, E.E., Cunha, M.R., Galéron, J., Mora, C., Roy, K.O.-L., Sibuet, M., Gaever, S.V., Vanreusel, A. and Levin, L.A. (2010). The influence of geological, geochemical, and biogenic habitat heterogeneity on seep biodiversity. Mar. Ecol., 31, 51-65 Corliss, J.B., Dymond, J., Gordon, L.I., Edmond, J.M., Herzen von, R.P., Ballard, R.D., Green, K., Williams, D., Brainbridge, A., Crane, K. and Andel van, T.H. (1979). Submarine thermal springs on the Galápagos Rift. Science, 203, 1073-1083 Davie, M.K. and Buffett, B.A. (2003). A steady state model for marine hydrate formation: Constraints on methane supply from pore water sulfate profiles. J. Geophys. Res., 108, 2495, doi:2410.1029/2002JB002300 Desbruyeres, D. and Toulmond, A. (1998). A new species of hesionid worm, Hesiocaeca methanicola sp. nov. (Polychaeta: Hesionidae), living in ice-like methane hydrates in the deep Gulf of Mexico. Cah. Biol. Mar., 39, 93-98 Dickens, G. (2001). On the fate of past gas: What happens to methane released from a bacterially mediated gas hydrate capacitor? Geochem. Geophy. Geosy., 2, art. no.-2000GC000131 Dickens, G. (2011). Down the rabbit hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene- Eocene thermal maximum and other past hyperthermal events. Past, 7, 831-846 Dickens, G.R. (2003). Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth Planet Sc. Lett., 213, 169-183. doi: 10.1016/s0012-821x(03)00325-x Dickens, G.R., O’Neil, J.R., Rea, D.K. and Owen, R.M. (1995). Dissociation of oceanic methane hydrates as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography, 10(6), 965-972 Ding, H. and Valentine, D.L. (2008). Methanotrophic bacteria occupy benthic microbial mats in shallow marine hydrocarbon seeps, Coal Oil Point, California. J. Geophys. Res.-Biogeo., 113. doi: 10.1029/2007jg000537

Archer, D. (2007). Methane hydrate stability and anthropogenic climate change. Biogeosciences Discuss., 4, 993-1057 Barnes, R.O. and Goldberg, E.D. (1976). Methane production and consumption in anoxic marine sediments. Geology, 4, 297-300 Biastoch, A., Treude, T., Rüpke, L.H., Riebesell, U., Roth, C., Burwicz, E.B., Park, W., Latif, M., Böhning, C.W., Madec, G. and Wallmann, K. (2011). Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification. Geophys. Res. Lett., 38, L08602, doi:08610.01029/02011GL047222 Blasing, T.J. (2013). “Recent greenhouse gas concentrations”. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. http://cdiac.ornl.gov/pns/current_ghg.html Boetius, A. and Suess, E. (2004). Hydrate Ridge: A natural laboratory for the study of microbial life fueld by methane from near-surface gas hydrates. Chem. Geol., 205, 291-310 Bohrmann, G., Greinert, J., Suess, E. and Torres, M. (1998). Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability. Geology, 26, 647-650. doi: 10.1130/0091-7613(1998)026<0647:acftcs>2.3.co;2 Booth, J.S., O’Leary, D.W., Popenoe, P. and Danforth, W.W. (1993). U.S. Atlantic continental slope landslides: their distribution, general attributes, and implications. In Submarine landslides: Selected studies in the U.S. Exclusive Economic Zone (eds. W.C. Schwab, H.J. Lee and D.C. Twichell). pp. 14-22. U.S. Geological Survey Bulletin no. 2002 Borowski, W.S., Paull, C.K. and Ussler, W., III (1999). Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates. Mar. Geol., 159, 131-154 Boswell, R., Collett, T., Frye, M., Shedd, B., McConnell, D. and Shelander, D. (2012). Subsurface gas hydrates in the northern Gulf of Mexico. J. Mar. Pet. Geol., 34, 4-30. Boucher, O., Friedlingstein, P., Collins, B. and Shine, K.P. (2009). The indirect global warming potential and global temperature change potential due to methane oxidation. Environ. Res. Lett., 4, 044007 Bouriak, S., Vanneste, M. and Saoutkine, A. (2000). Inferred gas hydrates and clay diapirs near the Storegga Slide on the southern edge of the Voring Plateau, offshore Norway. Mar. Geol., 163, 125-148 Bryn, P., Berg, K., Forsberg, C.F., Solheim, A. and Kvalstad, T.J. (2005). Explaining the Storegga Slide. Mar. Petrol. Geol., 22, 11-19. doi: 10.1016/J.Marpetgeo.2004.12.003 Buffett, B. and Archer, D. (2004). Global inventory of methane clathrate: Sensitivity to changes in the deep ocean. Earth Planet Sc. Lett., 227, 185-199 Bugge, T., Befring, S., Belderson, R.H., Eidvin, T., Jansen, E., Kenyon, N.H., Holtedahl, H. and Sejrup, H.P. (1987). A giant 3-stage

A GLOBAL OUTLOOK ON METHANE GAS HYDRATES 47

Made with